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The Programme for the Promotion and Development of Artificial Inte-
lligence in the Catalan Health System aims to create an environment 
to aid the development and implementation of Artificial Intelligence (AI) 
solutions to optimise processes in the Catalan health system.
TIC Salut Social Foundation has created this guide to support those 
involved in the development of code for Artificial Intelligence algorithms 
applied to the field of health. This document focuses on the importance 
of explainability in these developments. It aims to list and classify the 
main existing techniques based on the type of results to be explained.

Advances in Artificial Intelligence (AI), consisting 
of creating systems that can reason like human 
beings and learn from experience, finding out 
how to solve problems in specific conditions, 
comparing information and carrying out logical 
tasks in all areas of society, are now a reality. The 
growing availability of electronic health records, 
digital medical imaging tests, omics data, and a 
long list of health-related datasets, has given AI 
vast potential to improve people’s well-being [1].
Machine learning methods, and more speci-
fically deep learning techniques, are used to 
create complex AI algorithms that can respond 
to the need to learn from the great diversity of 
health data sources [2]. However, the use of the-
se kinds of techniques also requires understan-
ding of the internal functioning of the algorithms 
created. The complexity of the artificial neural 
networks used means that the decision-making 
mechanisms are often unknown even to the pe-
ople who develop the algorithms. We need to 
ask questions such as: Can we understand why 
the models give us a particular prediction? What 
areas do the algorithms focus on during the le-
arning process? Are they automatic enough or 
do they need human involvement? All these 
aspects are collected in the document “Ethics 
Guidelines for Trustworthy AI” published by the 
European Commission [3].
Therefore, ensuring the explainability of AI algo-
rithms is key to enabling widespread implemen-
tation of this type of tool in day-to-day clinical 

practice. Health care professionals must be 
able to trust these AI solutions to support their 
work; and this must be built on principles such 
as transparency and high standards. Health is a 
challenging scientific domain, but also involves 
ethical and legal challenges, as the decisions 
taken have an immediate impact on people’s 
well-being and life [1]. The trustworthiness of AI 
tools must thus be based on 3 components [3]:

Legal AI:  compliance with all 
applicable laws and regulations. 1

Ethical AI: ensuring ethical principles 
and values.2

Robust AI: from both a technical 
perspective (guaranteeing the 
robustness of the solutions), and a 
social point of view (taking account of 
the environment in which they operate)

3



8
2.1.

• Humans must provide quality data in or-
der for the algorithm to learn in the most 
appropriate way. This stage would include 
processes such as data labelling, and bias 
control and mitigation, etc. The machine 
learning algorithm will learn to make deci-
sions based on these data. 

• Algorithms synthesise the model to in-
fer what they have learned. This step can 
happen in various ways, which are often 
opaque to the developer. At this point it is 
important to introduce explainability tools 
so humans can interpret the algorithm’s 
decision-making mechanism and analyse 
the results.

• People need to test and validate the model 
by qualifying its results, especially when 
the algorithm is not completely sure or is 
too sure of a wrong decision. 

Each of these concepts is necessary, but not sufficient, to achieve what we know as Trustworthy AI.
Another aspect to highlight is the importance of human involvement in the development process for 
this type of tool. Although increasingly powerful AI techniques are being introduced and implemented 
to solve real-world problems, they are currently not fully autonomous systems in terms of decisi-
on-making. This is especially true for medical applications, where it is imperative for humans to be 
involved in the process. [4] This idea is captured in the human-in-the-loop (HITL) and human-on-the-
loop (HOTL) models, which take advantage of the strengths of humans and machines to produce the 
best results. Humans can diagnose how and why AI methods fail and reveal their drawbacks. They 
are thus involved in a continuous feedback process [5]:



9



2.
Explainable 

Artificial 
Intelligence (XAI)



11

Explainable Artificial Intelligence (Explainable AI or XAI) allows the re-
sults of an AI algorithm to be understood by humans, as opposed to the 
“black box” concept, when it is not possible to know which mechanisms 
have been activated to produce a specific response or output to an in-
put [6].

Interpretability v. 
Explainability

2.1.

Interpretability: An implicit ability of a system 
that allows it to be logical in the eyes of the 
people who look at it. Interpretability shows 
how well a machine learning model can as-
sociate a cause with an effect. This makes it 
possible to observe the cause-effect relation-
ship, but it does not provide information on 
the parameters involved.
Explainability: Active ability of a system to ex-
ecute actions that detail its internal workings. 
Explainability has to do with the capacity of a 
model’s parameters, often hidden in deep net-
works, to justify the results. The model can be 
explained in human terms, considering both 
the result and the entire internal decision-mak-
ing process. Explainability thus provides infor-
mation about the characteristics involved in a 
prediction.

Benefits of using 
explainability tools in AI

2.2.

The benefits of explainability must be analysed 
from multiple points of view, since several ac-
tors are involved throughout the lifecycle of an 
algorithm in which different implications will be 
observed. Thus, XAI is not a purely technolog-
ical issue. It involves a series of medical, legal, 
ethical and social aspects [12].
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From a development perspective, explaina-
bility is useful to enable developers to check 
their AI models in terms of more than mere per-
formance, so it can help detect when predicti-
on performance is based on metadata rather 
than the data itself. 

The complexity of artificial neural networks 
means that the developers of an algorithm 
with these characteristics are often ignorant 
of the internal mechanisms of the model when 
making a prediction. In these cases their task 
focuses on improving metrics by configuring 
parameters and hyperparameters. XAI makes 
it possible to improve knowledge of the al-
gorithm’s internal functioning. This deeper 
knowledge makes it possible to find out which 
characteristics are involved in the result and, 
therefore, aids improvement of the algorithm’s 
performance. In short, explainability allows 
more accurate algorithms to be developed.

For example: In a solution to predict the 
prognosis of COVID-19 with chest X-rays, the 
classifying algorithm may focus on the visual 
difference between a conventional X-ray and a 
portable X-ray (which is usually performed on 
patients with reduced mobility such as those 
in the ICU). In this case, although the model’s 
performance may be good, due to the corre-
lation between the type of X-ray and the pati-
ent’s condition, it would be advisable to revise 
the learning mechanisms.

AI developers

2.2.1 This type of phenomenon is known as the Cle-
ver Hans Effect. Initially described in social sci-
ence studies, it occurs when an experimenter 
unintentionally affects the individual being stu-
died with involuntary signals, so the responses 
are conditioned by stimuli outside the area of 
study. The Clever Hans effect is currently being 
discussed in other areas, such as Automatic 
Learning [13].

Health professionals 
(AI users)

2.2.2

From a medical point of view, the application 
of Explainability tools in AI algorithms is key 
to achieving the necessary trust on the part of 
end users. They are unlikely to trust a ‘black 
box’ algorithm. AI algorithms are created to 
support decision-making by health professio-
nals and trust is essential in this relationship.

The various possible types of explainability can 
provide information at different levels. They 
can also present the conclusions in various 
formats, adapting to the use case and experts’ 
needs. A first-level (or global) explanation thus 
makes it possible to understand the general 
characteristics that a particular model takes 
into account, providing rankings of the im-
portance of characteristics that explain which 
variables influence the predictions the most. 
In contrast, a second-level (local) explanation 
makes it possible to identify which characte-
ristics are relevant for a particular patient using 
graphics, images or numerical values, depen-
ding on the needs. That is why it is important 
for developers of AI solutions to be advised 
by the health care professionals involved du-
ring the process of implementing explainability 
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methods. The format and types of the expla-
nations should be agreed upon, reaching a 
compromise between what is technically pos-
sible and what is useful for end users.

Therefore, XAI aids analysis by end users, 
making it possible to quickly identify which 
characteristics have more weight in a predicti-
on or which points of an image test have con-
tributed to a particular diagnosis.

Patients

2.2.3

The fact that explainability tools improve the 
knowledge of algorithmic mechanisms for both 
AI developers and health care professionals, 
makes AI solutions more trustworthy. This in-
crease in trustworthiness eventually translates 
into greater trust by people, who are ultimately 
the ones who use AI solutions. All in all, the 
process of developing an AI tool must be cen-
tred on the person, who has a right to know 
how decisions affecting them have been made. 

Regulators

2.2.4

XAI brings a degree of transparency to AI, 
which builds confidence on the part of the re-
gulators who set AI guidelines. Deciphering 
“black box” algorithms has become essential 
to ensure the trustworthiness of AI and for the 
application of AI in medicine.
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Questions that XAI helps 
to answer

2.3

Through explainability we can address a set of 
open questions before executing an AI algorit-
hm. These questions affect different areas:

Correctness: Are we sure that all, and only, 
the features of interest contributed to our algo-
rithm’s decisions?
Robustness: Are we sure the model is not sus-
ceptible to disturbances? 
Bias: Are we aware of any specific biases in 
the data that unfairly penalise groups of indi-
viduals?
Improvement: In what specific way can the 
prediction model be improved?
Transferability: Specifically how can the pre-
diction model from one application domain be 
applied to another application domain?
Human understanding: Can we explain the 
model’s algorithmic machinery to an expert or 
even to a layperson?

Explainable AI cycle

2.4

As mentioned above, the process of develo-
ping an XAI solution must involve the expert 
professionals who will make use of the tool to 
ensure that the explanations given fit medical 
criteria and meet their needs in terms of level 
of understanding. 
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Figure 1. Chart showing the generation of information in XAI and clinical experience [11].

• Smart health apps are trained on a dataset (1) and use the resulting models (2) to make a pre-
diction (3). 

• The models obtained are used by XAI techniques (4) to generate explanations (5).
• These explanations, together with the predictions, are analysed with the help of the knowledge 

of health professionals who are experts in each case (6). 
• If the explanations obtained do not satisfy the experts involved, despite the AI model’s pre-

dictions being correct, it is necessary to review the actions that need to be taken to improve 
explainability. If it is detected that the model focuses on clearly erroneous features, the model 
must be reconsidered to analyse possible improvements (8). It may also be the case that the 
parameters of the explainability tool itself need to be modified, or the technique changed, be-
cause the results do not suit the model in question. This process will be repeated iteratively 
until a satisfactory result is achieved.  

• If the explanations and predictions are validated by experts, who have verified that the algo-
rithm focuses on parameters that make sense to them, and that this explanation meets the 
experts’ needs, then the algorithm can be considered to correctly explain the findings (7).
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Taxonomy of 
explainability tools

3.
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XAI taxonomy models

3.1.

In general, there is a lack of consensus regar-
ding the classification of techniques that follow 
XAI models. Various examples of taxonomy 
models are set out below.

Figura 2. Example 1 of a taxonomy map in XAI [7].
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Figure 3. Example 2 of a taxonomy map in XAI [8].

Figure 4. Example 3 of a taxonomy map in XAI [9].
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Figure 5. Example 4 of a taxonomy map in XAI [10].

Intrinsic Explainability and 
Post-hoc Explainability

3.2.

We distinguish between whether explainability 
is obtained through the model’s intrinsic na-
ture or by applying methods that analyse the 
models after training (post hoc). Intrinsic ex-
plainability refers to machine learning that is 
considered interpretable because of its simple 
structure, for example short decision trees or 
sparse linear models. Post hoc explainability 
refers to the application of interpretation met-
hods after the model is trained.

As one can see, machine learning methods 
can be classified according to several criteria. 

Global Explainability and 
Local Explainability

3.3.

XAI techniques can be applied globally, 
showing a general explanation of the model 
as a whole (importance of input features in the 
output prediction), or locally, focusing on a 
particular case study (a specific patient).
Global methods describe the broad behaviour 
of a machine learning model. They are useful 
methods when the modeller wants to interpret 
and analyse general mechanisms. Local met-
hods allow us to better understand the predic-
tions for each specific case.
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AI-generated models can be transparent (e.g. 
a model obtained from a logistic regression) 
or opaque (e.g. a model obtained from a con-
volutional neural network). Transparency re-
presents a human-level understanding of the 
model’s inner workings. Three dimensions can 
be considered. Simulability is the first level 
of transparency and refers to the model’s abi-
lity to be simulated by a human. Only models 
that are simple and compact fit into this cate-
gory. At the second level is Decomposability, 
which is the ability to break a model down into 
parts (input, parameters and calculations) and 
explain those parts. The third level of transpa-
rency expresses the ability to understand the 
procedure the model goes through to generate 
its output. It is known as Algorithmic Trans-
parency and must allow the model to be ins-
pected with mathematical analysis. 

Transparent models are a set of models who-
se architecture satisfies at least one of the 
three levels of transparency. The following are 
examples of transparent models [7]:

• Linear or logistic regression: this refers 
to a class of models used to predict contin-
uous/categorical objectives, respectively, 
under the assumption that this objective is 
a linear combination of the predictor vari-
ables.

• Decision trees: these contain a set of con-
ditional control statements arranged hier-
archically, where the intermediate nodes 
represent decisions and the nodes can be 
class labels (for classification problems) or 
continuous quantities (for regression prob-
lems). Decision trees are most commonly 
used when it is necessary to understand 
the application. 

Transparent Models and 
Opaque Models

3.4 • K-nearest neighbour algorithms: these 
deal with classification problems by pre-
dicting the class of a new data point by 
inspecting the classes of its k-nearest 
neighbours (where the neighbourhood re-
lationship is induced by a measure of dis-
tance between the data points). The major-
ity class is then assigned to the instance in 
question.

• Rule-based learning: this builds on an in-
tuitive foundation of producing rules to de-
scribe how the model generates the output. 

• Generalised Additive Models (GAMs): a 
class of linear model in which the result is a 
linear combination of some functions of the 
input characteristics. 

• Bayesian networks: probabilistic relation-
ships between variables are explicitly rep-
resented by a directed graph. Because of 
the clear characterisation of the connection 
between the variables, they examine only 
probabilistic relationships. They have been 
used in a wide range of applications.

Opaque models hinder observation of their in-
ternal mechanisms. To understand these opa-
que models we can use several methods [7]: 

• Random Forest (RF): this is seen as a way 
to improve the accuracy of decision trees, 
which often suffer from overfitting and con-
sequently little generalisation. This method 
combines multiple trees to make the mo-
del smaller, leading to better generalisation 
of the resolution. An entire forest is more 
complex to explain than a decision tree, so 
it requires a post hoc explanation techni-
que to be applied to gain understanding. 

• Support Vector Machine (SVM): a class 
of deeply-rooted models with geometric 
approaches. Initially introduced for linear 
classification, they were later extended to 
the non-linear case, making them suitable 
for real-life applications. In SVMs we find 
the maximum margin between data points. 
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• Artificial Neural Networks (ANN): a class 
of models that has been widely used in a 
wide range of applications. Their mathe-
matical/theoretical understanding has not 
been sufficiently developed, which makes 
them “black box” models.  From a techni-
cal point of view, neural networks are made 
up of successive layers of nodes that con-
nect the input features with the target func-
tion. Each node is an intermediate layer 
that collects and aggregates the outputs 
of the previous layer and then produces an 
output on its own by passing its aggregate 
value through a function (called an activa-
tion function). This process continues layer 
by layer until the output layer is reached. 
Therefore, the more layers the model has, 
the more difficult it is to interpret. Exam-
ples of this type of network are: convolu-
tional neural networks, recurrent neural 
networks, graph neural networks, etc.

Model-agnostic techniques 
and model-dependent 
techniques

3.5

Another important classification consists of di-
fferentiating between techniques that depend 
on the AI model resulting from the training pro-
cess and techniques that are model-agnostic. 

Model-agnostic techniques: They must be 
flexible enough not to depend on the model’s 
intrinsic architecture. They can be useful for 
non-standardised architectures or customi-
sed models to which specific techniques are 
not suited. They may also be used in cases in 
which there are several models with different 
architectures for which homogeneous explai-
nability is desired.

Model-dependent techniques: these aid the 
development of more efficient algorithms and 
more specific explanations, based on the fea-
tures of the model itself. The main characteris-
tic is that they are limited to specific architec-
tures.

• Visual explanation seeks to generate visu-
alisations that aid understanding of a mo-
del. They can be applied to both images 
and tabular data.

• Explanation by feature relevance seeks 
to explain a model’s decision by quanti-
fying the influence of each input variable. 
They are very useful in models that use ta-
bular data.

• Explanations by example extract repre-
sentative instances from the training data-
set to demonstrate how the model works.  

• Explanations by simplification are tech-
niques that approximate an opaque model 
by using a simpler one that is easier to in-
terpret.

Type of Explainability

3.6
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Explainability of 
algorithms based 
on Digital Medical 

Imaging

4.
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Medical imaging comprises the set of techniques and processes used 
to create images of the human body, or parts of it, for clinical purposes 
such as diagnosis, treatment and/or monitoring a disease. Some mo-
dels have demonstrated extraordinary accuracy in image analysis tasks 
in recent years. One significant problem is that these deep learning mo-
dels are “black box” algorithms, so they are intrinsically inexplicable.
Explanation methods attempt to show the reasoning in classification 
cases, preferably by building a degree of trust between the system, the 
health professional and the patient. Most image classification models 
use post hoc methodologies to analyse the features learned by the mo-
del. These techniques show the discriminative areas of the image. There 
are many different studies that apply post hoc explanatory methods to 
breast, prostate, lung, brain and liver cancer [14].

CAM (Class Activation 
Mapping)

4.1.

The CAM (Class Activation Mapping) method 
is one of the most popular for visual image ex-
planation. It is capable of finding the features 
in an image that are responsible for classifica-
tion in a neural network model. 

Figure 6. Graphic representation of the results of the CAM method [15].
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The process is a network consisting of convolutional layers in which, just before the final output 
layer, global average pooling (GAP) is performed on the convolutional features that will be used for 
a connected layer that will produce the desired output. This simple connectivity structure allows 
us to identify the importance of image regions by giving a weight to the output layer of the convo-
lutional features. Global average pooling produces the spatial average of each unit’s feature map 
in the last convolutional layer. A weighted sum of these values is used to generate the final output. 
Similarly, a weighted sum of the feature maps of the last conventional layer is calculated to obtain 
the class activation maps [16].

Figure 7. PCAM method process [17].

Grad-CAM (Gradient-
weighted Class Activation 
Mapping)

4.2.

Grad-CAM (Gradient-weighted Class Activa-
tion Mapping) is an extension based on CAM, 
explained above, which uses the gradients for 
the target class that derives in the final con-
volutional layer. Grad-CAM produces a locali-
sation map that highlights important pixels for 
image classification. Unlike CAM, this method 
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does not require any retraining and is broadly 
applicable to any architecture based on con-
volutional neural networks (CNN). 
First, the class score gradient is calculated for 
the activation maps in the last convolutional 
layer. The gradients are returned after averag-
ing them over the size of the activation map, 
and then the importance weights are calcu-
lated. The weighting factor shows the impor-
tance of the features for the class [16].

Figure 8. Grad-CAM views for different models.

C D

B
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LRP (Layer-wise Relevance 
Propagation)

4.3.

Layer-wise Relevance Propagation (LRP) is 
another visual explanation technique that dis-
plays a heatmap in the input space that shows 
the importance/relevance of each voxel that 
contributes to the final classification result. 
This method does not interact with network 
training, so it can be applied to pre-trained al-
gorithms. 
LRP uses network weights and neural activa-
tions to propagate the return output through 
the network to the input layer. There one can 
see which pixels actually contributed to the 
output. 
The network is a classifier in which each entry 
corresponds to a different class. In the output 
layer, a neuron or class that we want to explain 
is chosen. For this neuron the relevance is 
equal to its activation, so the relevance of the 
other neurons in the output layer will be zero. 
It is said to be a conservative technique, which 
means that the magnitude of the output is pre-
served through the backpropagation process 
and is equal to the sum of the relevance map 
of the input layer [19]. 
In LRP-epsilon a small epsilon is added to 
propagate the relevance with numerical sta-
bility.

Figure 9. LRP-epsilon heatmap v. original 
annotation [18].
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LIME (Locally Interpretable 
Model-agnostic 
Explanations)

4.4.

LIME (Local Interpretable Model-agnostic Ex-
planations) are explanations that highlight the 
most relevant features for the output. This is 
a local type of explanation, so it does not at-
tempt to explain all the decisions a network 
can make across all possible inputs. Instead, it 
only considers the factors it uses to determine 
their classification in an individual prediction 
[20].
This technique generates several samples that 
are similar to the input image by turning some 
of the image’s superpixels on and off. The 
weight of each artificial image to measure its 
importance is calculated to explain the most 
important features [16].

Figura 10. LIME explanation in medical imaging [18].
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SHAP (Shapley Additive Explanations)

4.5.

SHAP (Shapley Additive Explanations) is a method for explaining individual predictions based on 
the theoretically optimal values of the Shapley game. The goal is to explain the prediction of an 
instance by calculating the contribution of each feature. 
Shapley values arise from a context in which n players participate collectively and obtain a reward 
p that is intended to be distributed equitably to each of the players according to their individual 
contribution. In an ML model each player corresponds to a feature and the reward is the prediction 
[21].
Image classification tasks can be explained by the scores of each pixel in a predicted image, which 
shows how much it positively or negatively contributes to the probability.

Figure 11. SHAP explanation in medical imaging [22].
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Explainability of 
algorithms based 
on tabular data

5.
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In the field of health, a large volume of tabular data from multiple sources 
and formats is used every day, from variables taken from direct measu-
rements or tests on patients (blood tests, vital signs, omics data, etc.) to 
population registers or hospital management data.

PDP (Partial Dependence Plot) 

5.1

The PDP (Partial Dependence Plot) shows the marginal effect that one or two features have on the 
predicted result of a machine learning model. In practice, feature set S normally contains only one 
feature or a maximum of two, since one feature produces 2D plots and two features produce 3D 
plots [23].
For example, you can see the effect that variables such as age and number of years on hormonal 
contraceptives have on a cancer prediction:

Figure 12. Explainability PDP [23].
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We can also visualise the partial dependence of two features at the same time:

Figure 13. Representation of PDP explainability with 2 variables [23].
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Figure 14. ICE explainability [24].

ICE (Individual Conditional Expectation)

5.2

Graphs generated by ICE (Individual Conditional Expectation) show how the prediction of the 
instance changes when a feature changes. The Partial Dependence plot for the average effect of 
a feature is a global method because it does not focus on specific cases, but instead on a global 
average. The equivalent of a PDP for individual data instances is called an Individual Conditional 
Expectation (ICE) plot [24].

In the graph above, each line represents a patient. 
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Figure 15. Centred ICE explainability [24].

C-ICE (Centred ICE)

5.2.1

One problem with ICE charts is that it can sometimes be difficult to tell if ICE curves differ between 
individuals because they start with different predictions. A simple solution is to centre the curves 
at a particular point and show only the difference up to that point. The resulting graph is known as 
a centred ICE (c-ICE) graph [24].
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Figure 16. Counterfactual explainability [25].

Counterfactual Explanations

5.3

This type of explainability describes a cause-effect situation in the form: “If X had not occurred, 
Y would not have occurred.” In explainable machine learning, counterfactual explanations can 
be used to explain predictions of individual instances. The “event” is the predicted result of an 
instance, the “causes” are the specific values of features of this instance that were input into the 
model and “caused” a certain prediction [25].
We are interested in scenarios in which the prediction changes in a relevant way, such as a shift in 
the predicted class or in which the prediction reaches a certain threshold (for example, the proba-
bility of cancer reaches 10%). A counterfactual explanation of a prediction describes the smallest 
change in feature values that changes the prediction for a predefined output.

The graph shows two possible paths for a point X (in blue), originally classified in the negative 
class, to cross the decision boundary. The endpoints of both paths, CF1 and CF2, are shown in 
red and green respectively.
With this type of method it is possible to find out which variables can be influenced in order for a 
prediction to change from a potentially ‘negative’ state to a ‘positive’ one, for example.
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Figure 17. LIME explainability for tabular data.

LIME (Locally Interpretable Model-agnostic Explanations)

5.4

We can use LIME for a classifier model with images, as seen above, but also with tabular or text data. 
In the case of tabular data, LIME provides a type of explanatory graph representing the importance 
of each of the variables and the direction of their contribution to the result (positive or negative).

Anchors

5.5

This type of explanation is used for individu-
al predictions in any black box classification 
model by searching for a decision rule that 
sufficiently anchors the prediction. A rule an-
chors a prediction if changes in other feature 
values do not affect the prediction.
This approach deploys a perturbation-based 
strategy to generate local explanations for pre-
dictions of “black box” machine learning mod-
els. The resulting explanations are expressed 
as easy-to-understand IF-THEN rules [26].
This method provides a result explanation 
such as the one below:
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Figure 18. SHAP variable importance graph [27].

SHAP (Shapley Additive Explanations)

5.6

As explained above, Shapley’s explanations show the global importance of each feature. We thus 
average the absolute Shapley values and order them in descending order according to their impor-
tance in the final prediction [27].
Let’s look at the example of the contribution of each feature to the prediction of uterine cancer:

Figure 19. SHAP variable importance graph for prediction with omics data.
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Shapley values can also be visualised as “forces”. Each feature value is a force that increases or 
decreases the prediction. This prediction starts from the baseline that corresponds to the aver-
age of all predictions. In this plot each Shapley value is an arrow that pushes to increase (positive 
value) or decrease (negative value) the prediction. These forces balance each other in the actual 
prediction of the instance [27].
The following chart (Figure 20) shows two SHAP explanation force plots for two patients from a 
uterine cancer dataset:

Figure 20. SHAP force plot for two patients [29].

The first patient has a risk of 0.06. The variables that increase the risk, in red, are offset by effects 
that make it decrease, in blue. The second patient has a higher risk of 0.71. Variables that increase 
the risk predominate.
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Figure 21. Graphic representation of SHAP.

SHAP provides multiple graphic formats, as listed below:

Figure 22. Graphic representation of SHAP.
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Figure 23. Graphic representation of SHAP.

Figure 24. Graphic representation of SHAP.
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Explainability of 
algorithms based on 

Natural Language 
Processing

6.
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Natural Language Processing (NLP) allows, for example, the extraction 
of structured information from free-text (unstructured) reports with di-
agnostic, treatment or monitoring data [28] [29].

Neural networks in NLP are trained in an end-to-end manner on in-
put-output pairs. Since linguistic features are not explicitly encoded, it is 
unsure what information is captured in neural networks. The answer to 
this depends on three elements [30]:

1. The methods used to analyse 
the network, such as classifica-
tion or clustering.

2. The type of linguistic informati-
on that we assume the network 
captures, such as sentence 
length, parts of speech, or con-
cepts. 

3. The part of the neural network 
being investigated, such as 
weights, activations or embed-
dings. 
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Shapley Additive Explanations (SHAP)

6.1.

The SHAP technique can also be used to explain Natural Language Processing (NLP). The goal in 
this case is to see if the information is true or false. This model has been pre-trained with a manu-
ally-labelled dataset. The model’s explanation is used to explain the output of these by assigning 
to each feature an importance value based on the prediction [31].

Figure 25, a. SHAP explainability in NLP. (a) Example of a true claim: “Men have higher concentrations of angiotensin-converting en-
zyme 2 (ACE2) in their blood than women, which may help to explain why men are more vulnerable to COVID-19 than women”. / (b) 
Example of a false claim: “Consumig alcoholic beverages may help reduce the risk od infection by the novel coronavirus”. Explained 
by SHAP [31].

A)

B)

Factors that push the predicted truth probability are shown in red while those that push it to be 
false are shown in blue. The first example (Figure 25, a) represents a true claim with a probabili-
ty of 0.99. The words that contributed to producing the given prediction were help, angiotensin, 
converting, enzyme, women, ace2 and higher. The second example (Figure 25, b) represents a 
false claim with a truth probability of 0.02. The words that contributed to the given prediction were 
novel, coronavirus, alcoholic, help and reduce. 
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GbSA (Gradient-based Sensitivity Analysis)

6.2.

A very simple way to relate the inputs to their outputs is to calculate the partial derivative of the 
output with respect to each input feature. Sensitivity analysis can be applied directly or indirectly to 
textual data. A vector of size D will be obtained with the sensitivity of each output where the norm 
of the squared gradient will have to be decomposed for the prediction function. A drawback is that 
this technique does not necessarily apply saliency to the feature, but may apply noise. 

LRP (Layer-wise Relevance Propagation)

6.3.

LRP is used to decompose a text classifier’s decision function and uses the relevance scores to 
provide the highlighted text. 
Below are some records in which the highlighted characters help us clearly see why the model has 
predicted that this is a negative analysis [32].

Figure 25, b. Text with highlighted characters according to LRP values [32].
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Figure 27 shows the influence graph of the characters that contribute to a negative analysis (left) 
and to a positive analysis (right). The horizontal axis shows the impact on the model.  

Figure 28 shows the influence of the double/triple word on the prediction with LRP values for a 
negative analysis. When the two are compared, one can observe that the frequency of characters is 
lower than that of individual salience. These frequencies can be seen in the number of dots in each 
row. The vertical bar in the middle of each row is the average contribution of the feature regardless 
of whether it is uni-, bi- or tri-feature. Due to their low frequency, double and triple features have a 
very low impact on the analysis. 

Figure 27. Uni-feature diagram [32].

Figure 28. Bi-feature and tri-feature diagrams [32].
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LIME (Locally Interpretable Model-agnostic Explanations)

6.4.

Model-agnostic explanations can also be used to understand the output of an NLP system in hu-
man terms. 
With this technique it was considered that the words virus and protein contributed to defining this 
model as virology [33].

Figure 29. LIME explainability with NLP [33].
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